Spectral mapping theorems for subnormal operators

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectral Mapping Theorems for Hyponormal Operators

Let T=H+iK be hyponormal and Q be a strictly monotone increasing continuous function on s(H ). We define ~ Q(T ) by ~ Q(T )=Q(H )+iK. In this paper, we show that if z is an isolated eigenvalue of ~ Q(T ), then the corresponding Riesz projection is self-adjoint. Also we introduce Xia spectrum and study the existence of an invariant subspace of an operator ~ Q(T ).

متن کامل

Subnormal Embedding Theorems for Groups

In this paper we establish some subnormal embeddings of groups into groups with additional properties; in particular embeddings of countable groups into 2-generated groups with some extra properties. The results obtained are generalizations of theorems of P. Hall, R. Dark, B. Neumann, Hanna Neumann, G. Higman on embeddings of that type. Considering subnormal embeddings of finite groups into fin...

متن کامل

Hyperinvariant Subspaces for Some Subnormal Operators

In this article we employ a technique originated by Enflo in 1998 and later modified by the authors to study the hyperinvariant subspace problem for subnormal operators. We show that every “normalized” subnormal operator S such that either {(S∗nSn)1/n} does not converge in the SOT to the identity operator or {(SnS∗n)1/n} does not converge in the SOT to zero has a nontrivial hyperinvariant subsp...

متن کامل

Common Fixed-Point Theorems For Generalized Fuzzy Contraction Mapping

In this paper we investigate common xed point theorems for contraction mapping in fuzzy metric space introduced by Gregori and Sapena [V. Gregori, A. Sapena, On xed-point the- orems in fuzzy metric spaces, Fuzzy Sets and Systems, 125 (2002), 245-252].

متن کامل

5: Inner Products, Adjoints, Spectral Theorems, Self-adjoint Operators

Lemma 1.2 (An Eigenvector Basis Diagonalizes T ). Let V be an n-dimensional vector space over a field F, and let T : V → V be a linear transformation. Suppose V has an ordered basis β := (v1, . . . , vn). Then vi is an eigenvector of T with eigenvalue λi ∈ F, for all i ∈ {1, . . . , n}, if and only if the matrix [T ]ββ is diagonal with [T ] β β = diag(λ1, . . . , λn). Lemma 1.3. Let V be a fini...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Functional Analysis

سال: 1984

ISSN: 0022-1236

DOI: 10.1016/0022-1236(84)90083-1